Issue Generation¶
This section covers commands for generating and managing JIRA issues using AI assistance.
generate¶
Generate JIRA issues with AI-powered context from your codebase.
Arguments¶
MESSAGE: Description of the issue to generate (required)
Options¶
-t, --template PATH: Path to template file (default:default.md)-m, --model NAME: LLM model to use (default:gpt-4)--temperature FLOAT: Model temperature (0.0-1.0) (default: 0.7)--max-tokens INT: Maximum tokens to generate (default: 2000)-e, --editor: Open editor for manual editing-u, --upload: Upload issue to JIRA after generation-y, --yes: Skip all confirmations and use defaults--epic KEY: Link to epic (e.g.,PROJ-123)--type TYPE: Issue type (default: Story)--priority PRIORITY: Issue priority--labels LABELS: Comma-separated labels--components COMPONENTS: Comma-separated components
Interactive Workflow¶
-
Content Generation:
-
Metadata Extraction:
-
JIRA Upload (with
-u):
Examples¶
# Basic generation
jiragen generate "Add user authentication"
# Generate with custom template
jiragen generate "Fix memory leak" --template bug.md
# Generate and upload with specific metadata
jiragen generate "Add OAuth support" \
--upload \
--type Feature \
--priority High \
--labels "security,auth" \
--components "Backend"
# Generate and upload automatically
jiragen generate "Update dependencies" --upload --yes
# Generate with custom model settings
jiragen generate "Optimize database queries" \
--model gpt-4 \
--temperature 0.8 \
--max-tokens 2500
Best Practices¶
- Message Format:
- Be clear and concise
- Include key requirements
-
Specify the scope
-
Template Selection:
- Use
bug.mdfor bugs - Use
feature.mdfor features -
Create custom templates for specific needs
-
Metadata Management:
- Review extracted metadata
- Adjust priorities appropriately
-
Use consistent labeling
-
Interactive Mode:
- Review generated content
- Verify technical details
- Check acceptance criteria